Differentially Private Oblivious RAM

Sameer Wagh*, Paul Cuff[†], Prateek Mittal* July 24, 2019

* Princeton University, [†]Renaissance Technologies

Access data privately

from private database.

User receives record R

Obliviousness: Adversary should not know R

ORAM Application I

Client-server environments

Trusted Execution Environments such as SGX-based enclaves

Key Insight

Can we improve performance by relaxing privacy?

• Statistically private ORAM

- Better performance at the cost of privacy loss
- ► Challenge: Can we provide rigorous guarantees?

• Statistically private ORAM

- Better performance at the cost of privacy loss
- ► Challenge: Can we provide rigorous guarantees?

• Efficiency

- ▶ Reduce performance overheads bandwidth, local storage
- Achieve privacy proportional to application resources

Differential Privacy

• Formalize Differentially Private ORAM

• Introduce Root ORAM

Differential Privacy

• Formalize Differentially Private ORAM

• Introduce Root ORAM

- Theoretical Results
 - Empirical Results
- Private Information Retrieval

Differentially Private Oblivious RAM

DP-ORAM Intuition

DP-ORAM Intuition

Statistical closeness - Differential Privacy

$$\Pr[\texttt{ORAM}(\mathsf{a_1}) \in S] \leq e^{\epsilon} \Pr[\texttt{ORAM}(\mathsf{a_2}) \in S] + \delta$$

Protocol Construction

Root ORAM: Storage

Root ORAM: Invariant

Root ORAM: Updated mapping

Root ORAM: Updated mapping

Key Insight

• Uniform mapping \Rightarrow Conventional Security

Key Insight

 \bullet Uniform mapping \Rightarrow Conventional Security

• Non-uniform mapping \Rightarrow DP-ORAM Security

Root ORAM: Updated mapping

Impact

Lower average placement ⇒ Improved performance
Privacy loss

Root ORAM: Write back

Root ORAM: Lowest Common Intersection

Root ORAM: Lowest Common Intersection

Root ORAM: Lowest Common Intersection

Database view before access

Database view after access

Results

Differentially Private ORAM Protocol

The Root ORAM protocol with parameters k, p is (ϵ, δ) -differentially private for the following choice of ϵ and δ

$$\epsilon = 2 \log \left(\frac{1 + (2^k - 1) \cdot p}{1 - (1 - \delta_{k0})p} \right)$$

$$\delta = M \cdot \left(\frac{1 + (2^k - 1) \cdot p}{N} \right)^M$$
(1)

where δ_{k0} is the Kronecker delta, M is the size of the access sequence and M > total stash size.

Performance Improvements

Improvement in stash usage for (L, k, Z) = (15, 1, 4)

Performance Improvements

Key takeaway

DP-ORAM can enhance performance at the cost of privacy

Application: Private Information Retrieval

Private Information Retrieval (PIR)

^[46] Mittal, Prateek, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. "PIR-Tor: Scalable Anonymous Communication Using Private Information Retrieval." *In USENIX Security Symposium*, p. 31. 2011.

• ORAM has been used previously for PIR [7, 59]

^[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

^[59] Peter Williams and Radu Sion. Usable PIR. In Symposium on Network and Distributed System Security (NDSS), 2008.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

• ORAM has been used previously for PIR [7, 59]

[7] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably secure and practical online behavioral advertising. *In IEEE Symposium on Security and Privacy (S&P)*, 2012.

DP-PIR Bandwidth Comparison

Security-Bandwidth trade-offs for DP-PIR protocols (Toledo *et.al.* [54], Path-PIR [42], and Path ORAM [53]).

DP-ORAMs provide significant performance benefits for DP-PIR

Conclusion

- Formalized Differentially Private ORAMs
- Introduced a family of DP-ORAM protocols
- Analyzed security, performance
- Showcased utility for Private Information Retrieval

- Formalized Differentially Private ORAMs
- Introduced a family of DP-ORAM protocols
- Analyzed security, performance
- Showcased utility for Private Information Retrieval
- Possible to enhance performance by relaxing privacy

- Formalized Differentially Private ORAMs
- Introduced a family of DP-ORAM protocols
- Analyzed security, performance
- Showcased utility for Private Information Retrieval
- Possible to enhance performance by relaxing privacy

Source code is available at https://github.com/inspire-group/Root-ORAM

Thank you!

Thank you! Questions?